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A trajectory interpretation is developed for the Klein-Gordon equation in one 
dimension. The development is couched in a Hamilton-Jacobi representation. 
Equations of motion are developed. Different trajectories for a given eigenvalue 
energy are shown to manifest different microstates of the eigenfunction of that 
particular energy. 

1. INTRODUCTION 

Geometric ray theory is an asymptotic method for describing wave 
propagation in the short-wavelength limit. As such, it is incomplete for 
describing wave mechanics in general. Recently, a rigorous ray theory that 
accounts for finite wavelength has been developed and applied to under- 
water acoustics, where the index of refraction is to first approximation 
horizontally stratified (Floyd, 1976, 1984a,b). Rigorous ray theory has been 
developed in a generalized Hamilton-Jacobi representation. The rays of 
rigorous ray tracing obey equations of motion different than Snell's law for 
geometric ray theory (Floyd, 1984a), penetrate into the classically forbidden 
region beyond the WKB turning (internal refraction) points (Floyd, 1984a), 
and are not in general normal to the surfaces of constant Hamilton's 
characteristic function, albeit these surfaces remain transversals of the ray 
(Floyd, 1986a). As the horizontal ducts of underwater acoustics correspond 
to one-dimensional potential wells in quantum mechanics, a trajectory 
interpretation has been concurrently developed for one-dimensional time- 
independent nonrelativistic quantum mechanics (Floyd, 1982a,b, 1984b, 
1986c). While the trajectories of this interpretation have shown the attributes 
of rays of rigorous ray theory, this trajectory interpretation has also shown 
that the Schr6dinger wave function is not an exhaustive description of 
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nature, because different trajectories in phase space have the same action 
quantization and describe microstates for the wave function of the corre- 
sponding energy eigenvalue (Floyd, 1982b, 1986c). Furthermore, these 
trajectories obey equations of motion different than those of Bohm (Bohm, 
1952; Floyd, 1982b). 

Rigorous ray theory has been developed so far to tackle one- 
dimensional problems of horizontally stratified ducts of underwater acous- 
tics. While the application to problems where separation of variables is 
straightforward, the application to higher order dimensions is regrettably 
nontrivial in general. A general mathematical treatment for higher order 
dimensions has yet to be developed. Nevertheless, a trajectory interpretation, 
even in only one dimension in configuration space (i.e., two dimensions in 
phase space), has revealed and resolved many interesting issues in the 
foundations of nonrelativistic quantum theory. 

The objective herein is to extend the trajectory interpretation of nonrela- 
tivistic quantum mechanics, albeit limited to one dimension in configuration 
space, to spinless bosons described by the Klein-Gordon equation for the 
time-independent case. The equations of motion for trajectories in phase 
space are developed from a phenomenological Hamilton-Jacobi equation 
for relativistic continuous quantum motion for spinless bosons. 
Ramifications are discussed, and the confinement paradox (Bjorken and 
Drell, 1964; Klein, 1929) of the Klein-Gordon equation is shown to manifest 
itself in the trajectory interpretation. One dimension is sufficient for develop- 
ing most issues herein, so four-vector notation is not used. 

The rest of this exposition is organized with Sections 2-4 committed 
to mainly a mathematical development and Sections 5-7 committed to 
mainly an interpretational development. In Section 2, we present a Hamil- 
ton-Jacobi representation for relativistic quantum continuous motion. In 
Section 3, the various trajectories for a specified energy eigenvalue are 
shown to specify microstates that have the same quantization for the action 
variable. In Section 4, we develop the equations of motion for relativistic 
continuous quantum motion. In Section 5, the confinement paradox is 
discussed. In Section 6, an interpretation for the superluminal character of 
the trajectory is presented. In Section 7, quantum measurements with respect 
to a trajectory representation are discussed. 

2. THE HAMILTON-JACOBI EQUATION 

We assume a time independence. Let us consider the one-dimensional, 
x, phenomenological Hamilton-Jacobi equation for relativistic continuous 
quantum motion for spinless particles given by 

(OW/Ox)2-(1/c2)(E2-m2c4-2EV+ V 2) = -�89 x) (1) 
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where W is Hamilton's characteristic function for relativistic continuous 
quantum motion, c is the speed of light, E is energy, rn is the rest mass, V 
is the potential and a function of x, and h is Planck's constant divided by 
27r. The Schwarzian derivative is defined by 

, o3Wlox 3 3 [ a 2 w / o x 2 ]  2 
(W;x)=- ~ 2k OW/Ox J 

The solution to equation (1) is given by 

O W/Ox = (2m)1/2/(a052+ b02+ d050) (2) 

where a and b are positive-definite constants, d is a constant such that 
d2< 4ab, and 05 and 0 form a set of independent solutions to the Klein- 
Gordon equation for 0 

-c2h 2 02q~/Ox2+ (m2c 4 -- E2+2EV - V2)~b = 0 (3) 

The solutions 05 and 0 are scaled such that the Wronskian ~ for equation 
(3) is given by 

7g'(05, O) = (l /h)[2m/(ab - d2/4)] ~/2 

The substitution of the equation (2) as the solution into equation (1), the 
Hamilton-Jacobi equation, leads to equation (3), the Kle in-Gordon 
equation, which itself is also a phenomenological equation. 

We may choose a set of independent solutions such that d = 0 (Floyd; 
1986b). In such case, the solution for the Hamilton-Jacobi equation may 
be represented by 

0 W/Ox = (2m) ~/2/(a052 + bO 2) (2) 

In one dimension, the solutions 05 and 0 may always be real (Landau and 
Lifshitz, 1958). Thus, the conjugate momentum 0 W/Ox is always real, even 
in the classically forbidden zone. 

In the nonrelativistic limit, we let E = E'+ me 2, where mc2>> E ' ,  and 
equation (1) may be represented by 

�89 x)+(OW/Ox)2=2m(E ' -  V)+ O(c -2) (3) 

which is consistent to order c -1 with the nonrelativistic Hamilton-Jacobi 
equation for quantum continuous motion (Floyd, 1984b, 1986b). 

3. Q U A N T I Z A T I O N  A N D  M I C R O S T A T E S  

Let us examine the action variable J for a bound state as given by 

; OWdx ~ (ab-d2/e)'/2~ O) 
J = J ~--x = h a052+bO2+d05 0 dx (4) 



276 Floyd 

Equation (4) is now in the same form as the equation for the action variable 
for nonrelativistic continuous quantum motion (Floyd, 1986c), where it was 
shown that J = 2Nh, where N is the order of the eigenfunction and h is 
Planck's constant. Hence J is quantized in accordance with the order of  
the eigenfunction as specified by E. The quantization of J is independent 
of  the coefficients a, b, and d. But these coefficients specify different conju- 
gate momenta  as a function of x and, so, different trajectories. Thus, each 
trajectory represents a different microstate for this action variable quantiz- 
ation. 

Let us consider a new independent set (~', ~:) of solutions for the 
Kle in-Gordon equation in one dimension, which reduces to a Helmholtz 
equation, represented by (Floyd, 1986b, 1986c) 

~" = (aq52 + b02+ dgaO),/2 

x 1 
= [a - d2/(4b)]'/205 (5) 

and 

= (a(~2+ b02+ d(aO),/2 

xs in l fX(ab-d2/4) l /2~  

= bl/20 + &b/(2b 1/2) 

For this new set, the conjugate momentum p for relativistic continuous 
quantum motion and the Wronskian ~" may be given as 

p = (2m)'/2/(rob 2 + bO 2 + &bO) =(2m) ' /2 / (~2  + g2) (6) 

and 

~2(~, ~) = ( ab - d2/ 4) l / 2~ (  (a, O) 

Equation (6) confirms that we may always choose a set of solutions such 
that d = 0. 

Let us set ~ = a0~ in equation (5), where a is a coefficient. Then equation 
(5) becomes an identity with a = [ a -  d2/(4b)] '/2. Hence, the coefficients 
a, b, and d only effect the normalization of the wave function and do not 
change the predictions of  quantum measurement of an observable (i.e., 

6 ' A 6 / 5  6'~0, where A is the operator for the observable). Nevertheless, 
the coefficients determine different trajectories in phase space. The different 
trajectories represent different microstates of  the same wave function. For 
a given energy, the different trajectories may be specified by the coefficients 
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a and b, since a set of solutions may be chosen for which d = 0. Examples 
of different nonrelativistic orbital trajectories in phase space for the same 
eigenvalue E have been presented by Floyd (1982b). The coefficients a and 
b are hidden variables, along with the constant of the motion E, that specify 
the various microstates, which manifest different trajectories, of a particular 
wave funct ion.  

4. EQUATIONS OF MOTION 

While the equations of motion may be developed in a representation 
described by the set of independent solutions (qS, 0), these solutions are 
not always known. For convenience, let us introduce a modified potential 
U specified by 

2[ v -  v2/E +�89 W; x>] 
U - - -  

1 •  V 2 / E  -�89 W; x)] 1/2 

We choose the plus sign in the above equation so that U -+ V as E --> oc. An 
alternate specification for U is given by 

1 (E-U) O2U/Ox2-(OU/Ox)2 5[ (E-U) OU/Ox ]2 

1 
+-~5~c 2 [2E( U -  V ) -  U2+ V 2] = 0 (7) 

From equation (7), U is dependent on E. Since equation (7) is nonlinear, 
U has nonlinear critical points, which for this case are classified as nodal 
points, since 

U ~ E •  2 as x ---> oo 

for bound state energies. The solution for U may be given in closed form, 
where known, by 

2mc 2 ],/2 
U = E • m2c4q - (acb2+ bO2+ d050)2 j (8) 

and therefore U is dependent upon the particular trajectory [i.e., U =  
U(x ,  E, a, b) as a solution set (05, 0) can always be chosen such that d = 0]. 

The Hamilton-Jacobi equation may now be expressed in terms of U as 

(O W /  Ox) 2 - ( I /  c2)( E 2 - m 2 c 4 -  2 E U  + U 2) = 0 (9) 

In this representation, the Hamilton-Jacobi equation appears as a first-order 
nonlinear differential equation, which may be directly integrated, albeit U 
is dependent upon the trajectory. As E appears intrinsically in U, E is no 
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longer a first integral of the motion, although it remains a constant of the 
motion. From the integral form of the Hamilton-Jacobi equation, 

S(x ,  t, 17,, a, b) = W ( x ,  E, a, b ) - E t  

where S is Hamilton's principal function and t is time and where the 
trajectory dependence upon the hidden variables a and b has been made 
explicit, the equation of motion for the trajectory may be expressed by 

c ( E  2 - m2c4-2EU + U2) 1/2 
2~ - (10) 

( E -  U ) ( 1 - O U / O E )  

From equations (7) and (10), we may numerically integrate concurrently 
the trajectory and U for those cases for which we do not know the closed 
form of the solution set (~b, 0). 

We note that 

a W / a x  

~ { m 2 + [(a  W/ax)/c] 2} 1/~ 

so that, in general, the conjugate momentum is not the relativistic mechanical 
momentum, i.e., 0 W / O x  # m~[ 1 - (~/c)  2] 1/2. If U should be independent 
of E, then the conjugate and mechanical momenta are the same. This implies 
that in more than one dimension the trajectory is not necessarily normal to 
the transversal planes of constant W (Floyd, 1982b, 1984a). 

Since equation (7) is nonautonomous, U is a nonlocal potential (physi- 
cally, it is trajectory-dependent), and the hidden variables a and b that 
specify the trajectories (microstates) are classified as nonlocal hidden vari- 
ables. 

5. THE CONFINEMENT PARADOX 

In this section, let us consider a potential well where V ( x )  increases 
without limit as I x l - ~ .  This situation is the well-known confinement 
paradox (Klein, 1929; Bjorken and Drell, 1964). For such potentials, the 
solution for the Klein-Gordon equation becomes oscillatory again far 
outside the well. This effect is exacerbated by making the potential more 
tightly binding. The forbidden region is separated from the oscillatory 
(allowed) region in configuration space by WKB turning points x,, where 
V(x ,  ) = E • mc 2. This paradox arises as a result of incorporating solutions 
of negative energy and negative rest mass into the Klein-Gordon equation. 
The well-known resolution to the paradox is that the negative-energy sol- 
utions represent antiparticles moving backward in time. 

In a trajectory interpretation, the trajectories penetrate the forbidden 
region consistent with equation (2'). In the less-confined potential well case 
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where the wave function does not become oscillatory again, the turning 
points recede to infinity, where 0 W/Ox becomes zero asymptotically (Floyd, 
t982b). 

But for the confinement problem, 0 W/Ox  is never zero, and there is 
no turning point. The trajectories pass right through the forbidden region 
connecting the "particle" oscillatory region with the "antiparticle" region. 
Here we have a metastable condition represented on a time-independent 
trajectory where particles and their antiparticles are represented on the 
same trajectory without any apparent annihilation and creation points. The 
Kle in-Gordon equation describes bosons, and all known spinless bosons 
are unstable. Hence, the trajectory through the forbidden region between 
the oscillatory regions represents a tunneling by a metastable state. 

Antiparticles call for the use of the other square root of equation (8). 
As 4~ and 0 are real, the nodal form of the critical point behavior of U 
effectively confines U to two disjointed domains in energy, U < - E -  m c  2 

for particles and U >- E + rnc 2 for antiparticles. A nodal point in equation 
(7), where U =  E • mc 2, renders an opportunity to shift roots between 
particle and antiparticle solutions in equation (8) while maintaining a 
continuous 0 U/Ox. But a nodal point in equation (7) implies a nodal point 
in equation (9), where 0 W/Ox  = 0, which concurrently describes a turning 
point. 

There exists a mechanism for producing on the trajectory a point that 
demarcates the particle side from the antiparticle side. Let us endeavor to 
induce a nodal singularity in U at some finite xo. Such a node would 
function as a branch point singularity for shifting roots in equation (9) 
between the particle and antiparticle roots while maintaining a smooth 
trajectory. Let U have a local maximum at Xo such that U may be approxi- 
mated in a neighborhood sufficiently close to xo by 

U = E - m c 2 - e - A ( x - X o )  2, 0<e<< 1 (11) 

where A is a real, nonnegative coefficient for the quadratic term and e is 
positive and may be made infinitesimally small. If  equation (11) is sub- 
stituted into equation (7), a quartic equation in A is generated, for which 
one solution has the form 

2e 
A = - ~ c  2 [E - mc 2 -  V(xo)][E + mc 2 - V(xo)] (12) 

while the other three solutions for A contain the factor (X-Xo) to some 
order and therefore are invalid solutions for the coefficient of ( x -  xo) 2. As 
A contains the factor e, A may be made infinitesimal and we may get 
arbitrarily close to inducing a branch point singularity. From equation (12), 
the coefficient A can only be positive for xo in one of the oscillatory regions. 
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So we cannot induce a branch point singularity in the forbidden region 
where the trajectory is tunneling between the particle and antiparticle 
regions, and any smooth transition must occur in one of the oscillatory 
regions. Of course, we could allow a shift between particle and antiparticle 
solutions to equation (10) in the forbidden region if we accept a discontinuity 
in momentum of the trajectory in phase space. 

6. TRAJECTORY VELOCITY 

Here, we consider a loosely bound state such that V ( x ) <  E + mc 2. 
Then the only oscillatory region for the wave function is located in the 
potential well. The turning points for the trajectory recedes to infinity (i.e., 
xt ~ + o0). At the turning point, 0 W/Ox--> 0 as x -~ + oo. But concurrently, 
at the turning point, equation (10) must be evaluated by l 'H6pital 's limiting 
process to determine that 2 ~ + oo as x -> eo where 2 becomes superluminal. 
Therefore, the trajectory cannot be interpreted to imply the transfer of 
material, either mass or energy [the conjugate momentum 0W/0x  and its 
Schwarzian derivative are inputs to energy in accordance with equation 
(1)]. This phenomenon is best exhibited in higher dimensions. As noted in 
Section 3, the trajectory is generally not normal to the surfaces of constant 
W, albeit these surfaces are still transversals of the trajectory. At the infinite 
turning point, the trajectory is embedded in the plane of its transversal and 
its velocity becomes infinite while the conjugate momentum goes to zero 
(Floyd, 1984a). The trajectory velocity is then a phenomenological ray 
velocity. 

7. QUANTUM MEASUREMENTS 

In one dimension and for time independence, both the Hamilton-Jacobi 
equation for continuous relativistic quantum motion, equation (1), and the 
Klein-Gordon equation are phenomenological descriptions. Is one more 
fundamental than the other? The answer depends upon one's interpretation 
of quantum measurement. 

If we could somehow measure, determine, or prescribe the set of hidden 
variables a and b that determine the particular trajectory or microstate of 
a wave function with eigenvalue energy E, then we would know the relativis- 
tic continuous quantum motion for a particle, including excursions into the 
classically forbidden regions. While a unique solution (trajectory) for 
equation (1) is determined by the initial conditions of 0 W/Ox and 0 2 W/Ox 2 
at xo, we may also determine the trajectory within limitations of the multiple 
trajectory problem from boundary conditions from knowledge of the times 
at which the trajectory passes through three or more spatial locations. The 
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hidden variables are sufficient to determine a generator of the motion, 
Hamilton's characteristic function, for a particular microstate. In this inter- 
pretation, a Hamilton-Jacobi representation is more fundamental than the 
Kle in-Gordon representation. 

If one asserts a positivistic interpretation of quantum mechanics and 
alleges that the individual trajectories are only phenomenological and 
devoid of  any physical meaning, then the Hamilton-Jacobi representation 
is still equivalent to the Klein-Gordon representation, as the trajectories 
(microstates) describe the same wave function (Floyd, 1986b) and the 
quantum measurement for an observable A with operator A is still given by 

Of course, in this positivistic interpretation, we have discarded the informa- 
tion rendered by the hidden variables a and b, which specify the particular 
trajectory. And i f  observations are sufficient to determine a specific trajec- 
tory, either by boundary values or initial conditions, in a nonclassical limit, 
then a positivistic interpretation would not attempt to specify the trajectory 
for continuous quantum motion, but rather would attribute the observations 
to an observed sample of  the ensemble of quantum probabilities of a system 
in the nonclassical limit. 
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